
Biomechanics: Physics of movement in living organisms

- Kinetics forces
- Kinematics spatial & temporal
- Motor control
 - Open loop (too rapid for feedback)
 - closed loop (feedback)
- Motor development
- Motor learning

Analysis

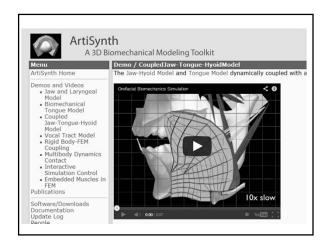
- Quantitative forces acting at a certain joint in Pascals or Newtons
 - trigonometry and measurements
- Qualitative observations to identify critical features

Quantitative analysis

Throat movements (a) larger than jaw movements (b) in normal babies, suction pressure and expression pressure proportional to but not perfectly synchronized with these movements

Mizuno K et al 2006 Analysis of feeding behavior with direct linear transformation Early Human Behavior 82 p 199-04

Fundamentals


- Critical features most invariant technique points required for effective, efficient, safe movement
- Qualitative analysis identifies critical features
- Teaching cues derived from critical features

Qualitative Analysis-Kinematics

Qualitative Analysis Component Composite

Motor learning in childhood (Bernstein)

- Freezing (reducing ROM)
- Releasing (releasing more and more joints)
- Exploiting (taking advantage of nuances)

'Freezing' Range of Motion in breastfeeding newborns

- Tongue and jaw movements linked
- Jaw 'falls open' high flexor tone
- Tongue-Jaw Dissociation with experience bf

Muscle Action

Forces:

- Rotary movement around a joint
- Stabilizing (pull joint tighter)
- Destabilizing (separate joint components)

Reciprocal Action:

- Agonist/Antagonist

Modifying Factors

- Friction
- Gravity
- · Type of Joint

Stability: Support against mom's body contours Less effort needs to go into stabilization, more freedom for mobilization at each relevant joint

Newton's Laws of Motion

- 1. Inertia
- Dynamics
 (acceleration
 proportional to force)
- Reciprocal forces (action/reaction)
- Gravitation attraction proportional to masses multiplied over distance squared.

Properties of force

- Direction
- Orientation
- Point of application
- Magnitude
- Line of action

Muscle Force Vectors

Resultant force: Motor units

Recruitment

• Origin Fatique

• Insertion

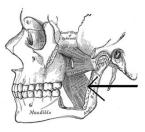
Direction of fibers

For each muscle!

New tasks are inefficient, insufficient integration of motor units to produce large resultant vector

Shaking

Lack of synchronous, coordinated contraction of muscle units in early learning



Jaw Muscles - Balanced forces

Temporalis and Masseters (superficial)

Pterygoids (deep)

From Grey's anatomy, wikimedia commons license

 Excessive forces from the medial pterygoid muscles can contribute to a "biting" suck

- Try fatiguing the pterygoids (allow infant to chew finger at back sides of gums)
- Work on improving latch depth
- Tongue strength & grooving

Fatiguing Pterygoids Sharon Vallone, DC

- Allow baby to chew on fingertip placed between gums at back of mouth
- Alternate sides

Muscles

Normal Adaptation to increased Strain –

- Increased firing rates (neural)
- More efficient recruitment of motor units (neural)
- Hypertrophy (muscular)

Compensation

Adaptation elsewhere for abnormal movements in a segment

Reducing Forces Required

Nipple shield stabilizes teat in mouth; reduces need for baseline suction

Breast Compression

- Increase positive pressure in breast (increase differential)
- Negative resistance (stimulate sucking)

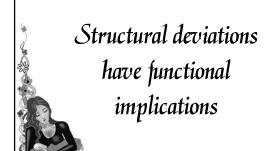
Isolated vs. Sequential Swallows

"Sequential swallowing, in comparison to discrete swallowing, elicits simplification or down-scaling of several kinematic parameters." Steele and van Lieshout ASHA 52:Oct 2009

Reducing flow: press on breast during MER (Carol Chamblin DNP, IBCLC)

Motor learning

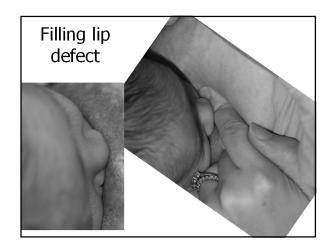
- Reflexes and central pattern generators
- Modification learning
- Practice only makes perfect if you practice doing it perfectly!
- Feedback makes the difference (reward)

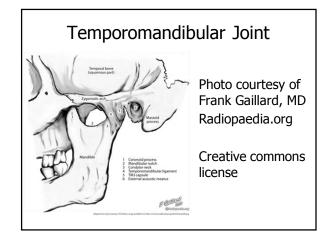

Motor Learning: Feedback

Contingency

Rate of flow

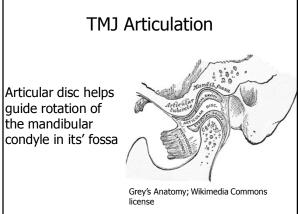
Motivation


Biomechanical Challenges for Breastfeeding - Structural

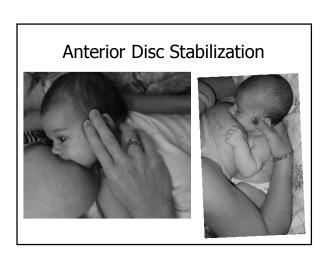

- Torticollis
- TMJ Anterior Disc Displacement ("popping" jaw)
- Retrognathia
- Undeveloped buccal (cheek) fat pad
- Cleft lip
- Micrognathia

Shaping a Mouthful

compensate for small gape or reduced tongue protrusion

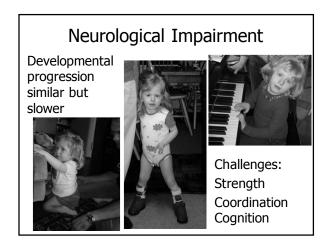


TMJ

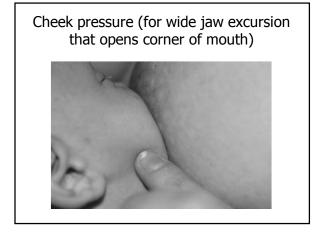

http://www.youtube.com/watch?v=IP_VPiYnyNs

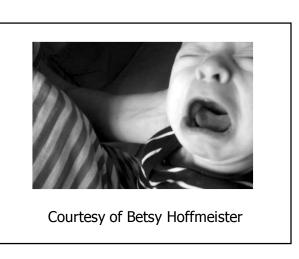
• Anterior disc displacement with reduction http://www.youtube.com/watch?v=DesYZQUmqus

Normal TMJ Function



Biomechanical Challenges... CNS dysfunction


- Slower speech/sucking due to poorer coordination.
- Recruitment of muscle fibers in shivering or fasciculation reduces the number available for movement.



Tremor: rhythmic involuntary oscillation - fatigue or neurological impairment
Fasciculation: arrhythmic - extreme fatigue

Dancer Hand Position

Cheek and jaw support

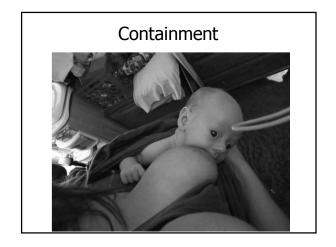
- Decrease intraoral space
- Prevent excessive jaw excursions

Cheek and jaw support

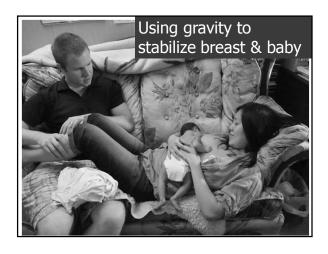
May provide too much flow

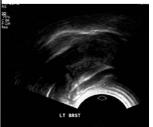
Hypotonia supporting breast in mouth

Hypotonia cheek support (inward and forward)


Hypotonia: Head & Jaw support

Sublingual massage





Forces During Breastfeeding

Field forces vs. contact forces

- Breast /nipple strain
- Milk capillary pressure
- Nipple duct viscoelastic walls, hydraulic pressures, expansion
- Positive pressure myoepithelial cell cntrxn
- Tongue/jaw- negative pressure, expression pressure

Baseline negative pressure

Pressure = Force/Area

Friction

- Static high force to overcome
- Kinetic
- Rolling (peeling between ground and wheel)

Material properties of breast

Ductile (pliant)

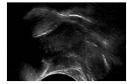
Co-efficient of restitution (increased by warmth)

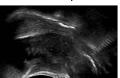
Area under stress/strain curve= toughness

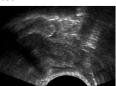
Material Properties Toughness

Toughness = total energy to rupture

Accumulated microtrauma lowers failure strength (sudden failure)


Set the pump on low


viscoelastic fluid content deformation is proportional to rate of loading and time under constant load


Strain $\varepsilon = \Delta L/L_i$

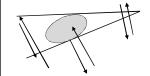
Nipple gets thinner as it elongates

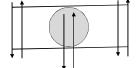
Stress orthogonal to direction of loading causes deformation

- Suction only
- MER flow

Pigeon Peristaltic & Peristaltic Plus

- Peristalsis/expression
- + 4 'sizes' flows 2 slow, 2 crosscut

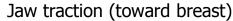




Torticollis mandibular asymmetry

-deformation of oral structures -imbalance of muscular forces

Effect of muscle/bone deformation on forces



Parallel forces can be treated as co-linear

Sublingual Pressure

- Improves base of support
- Draws tongue/hyoid into normal position
- Supports tongue movements

Jaw Support (toward breast)

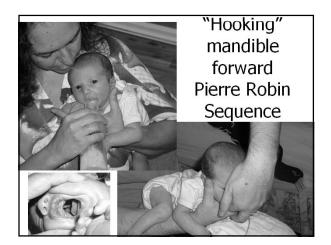
Torticollis Postural support, allowing head tilt/rotation

Mild Torticollis: Asymmetrical Positioning

reduced biting (n=1)

Micrognathia

- Misalignment of forces
- Short mandibular 'lever'
- Can force tongue back, reducing power and obstructing airway



Micrognathia & retroplaced tongue: prone feeding with head extension

If no respiratory difficulties sidelying with extension

Summary

- Biomechanics new solutions for bf difficulties
- Critical features teaching points
- Motor learning practice the right things!
- Support improve alignment and stability
- Modify forces tools and techniques
- Avoid injury by reducing strain

For more information: Selecting and Using Breastfeeding Tools Improving Ours and Outsoness SUPPORTING SUCKING SKILLS in Breastfeeding Infants Content Region Grown 18, 1802: http://cwgenna.com/rssfeed.xml